CSE 12 – Basic Data Structures

Prof. Christine Alvarado
[Slides borrowed/adapted from slides by Cynthia Lee]
Announcements

1. HW3 posted, code available tomorrow morning, but there’s plenty to do in the meantime
Faculty Coffee Hour
Wed April 16th 1:30pm - 3pm
Jacobs Hall 4th Floor, Room 4309

Get a chance to network with your CS professors over coffee provided by WIC. Talk about classes, ask for industry advice, or just have a quick chat over a cup of joe!
\(f_1 \) is \(\mathcal{O}(f_2) \)

A. TRUE
B. FALSE

Why or why not?

In other words, for large \(n \), can you multiply \(f_2 \) by a constant and have it always be bigger than \(f_1 \)
\(f(n) = O(g(n)), \) if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \leq c \cdot g(n) \) for all \(n \geq n_0 \).

- Obviously \(f_2 = O(f_1) \) because \(f_1 > f_2 \) (after about \(n=10 \), so we set \(n_0 = 10 \))
 - \(f_1 \) is clearly an upper bound on \(f_2 \) and that’s what big-O is all about
- But \(f_1 = O(f_2) \) as well!
 - We just have to use the “\(c \)” to adjust so \(f_2 \) that it moves above \(f_1 \)
f(n) = O(g(n)), if there are positive constants c and n₀ such that \(f(n) \leq c \cdot g(n) \) for all \(n \geq n₀ \).

- Obviously \(f₂ = O(f₁) \) because \(f₁ > f₂ \) (after about \(n=10 \), so we set \(n₀ = 10 \))
 - \(f₁ \) is clearly an upper bound on \(f₂ \) and that’s what big-O is all about
- But \(f₁ = O(f₂) \) as well!
 - We just have to use the “c” to adjust so \(f₂ \) that it moves above \(f₁ \)
Common Big-O confusions:

- What if we multiply \(f_2 \) by a large constant, so that \(c^* f_2 \) is larger than \(f_1 \)?
 Doesn’t that mean that \(f_2 \) is not \(O(f_1) \)?
 No, because we get to control the constants to our advantage, and only on \(f_1 \).

- What about when \(n \) is less than 10? Isn’t \(f_2 \) larger than \(f_1 \)?
 Remember, we get to pick our \(n_0 \), and only consider \(n \) larger than \(n_0 \).
f_1 is $\Omega(f_2)$

A. TRUE
B. FALSE

Why or why not?
We say a function $f(n)$ is "big-omega" of another function $g(n)$, and write $f(n) = \Omega(g(n))$, if there are positive constants c and n_0 such that:

- $f(n) \leq c \cdot g(n)$ for all $n \geq n_0$.

In other words, for large n, can you multiply $g(n)$ by a constant and have it always be smaller than or equal to $f(n)$.
f_2 is $\Omega(f_1)$

A. TRUE
B. FALSE

Why or why not?

In other words, for large n, can you multiply f_1 by a positive constant and have it always be smaller than f_2
f(n) = O(g(n)), if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \leq c \times g(n) \) for all \(n \geq n_0 \).

f(n) = Ω(g(n)), if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \geq c \times g(n) \) for all \(n \geq n_0 \).

- Obviously \(f_1 = O(f_2) \) because \(f_1 > f_2 \) (after about \(n=10 \), so we set \(n_0 = 10 \)).
 - \(f_2 \) is clearly a **lower bound** on \(f_1 \) and that’s what big-\(Ω \) is all about.
- But \(f_2 = Ω(f_1) \) as well!
 - We just have to use the “\(c \)” to adjust so \(f_1 \) that it moves below \(f_2 \).
\[f(n) = \mathcal{O}(g(n)), \text{ if there are positive constants } c \text{ and } n_0 \text{ such that } f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0. \]

\[f(n) = \Omega(g(n)), \text{ if there are positive constants } c \text{ and } n_0 \text{ such that } f(n) \geq c \cdot g(n) \text{ for all } n \geq n_0. \]

- Obviously \(f_1 = \mathcal{O}(f_2) \) because \(f_1 > f_2 \) (after about \(n=10 \), so we set \(n_0 = 10 \))
 - \(f_2 \) is clearly a **lower bound** on \(f_1 \) and that’s what big-\(\Omega \) is all about
- But \(f_2 = \Omega(f_1) \) as well!
 - We just have to use the “\(c \)” to adjust so \(f_1 \) that it moves below \(f_2 \)
\[f(n) = \mathcal{O}(g(n)), \text{ if there are positive constants } c \text{ and } n_0 \text{ such that } f(n) \leq c \cdot g(n) \text{ for all } n \geq n_0. \]

\[f(n) = \Omega(g(n)), \text{ if there are positive constants } c \text{ and } n_0 \text{ such that } f(n) \geq c \cdot g(n) \text{ for all } n \geq n_0. \]

\textbf{f}_1 \text{ is } \mathcal{O}(f_3) \]

A. TRUE
B. FALSE

Why or why not?
\(f(n) = \mathcal{O}(g(n)) \), if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \leq c \cdot g(n) \) for all \(n \geq n_0 \).

\(f(n) = \Omega(g(n)) \), if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \geq c \cdot g(n) \) for all \(n \geq n_0 \).

\(f_3 \) is \(\mathcal{O}(f_1) \)

A. TRUE
B. FALSE

Why or why not?
$f_1 = O(f_3)$ but $f_3 \neq O(f_1)$

There is no way to pick a c that would make an $O(n)$ function (f_1) stay above an $O(n^2)$ function (f_3).
\[f(n) = \Theta(g(n)), \text{ if there are positive constants } c \text{ and } n_0 \text{ such that } f(n) \leq c \times g(n) \text{ for all } n \geq n_0. \]

\[f(n) = \Omega(g(n)), \text{ if there are positive constants } c \text{ and } n_0 \text{ such that } f(n) \geq c \times g(n) \text{ for all } n \geq n_0. \]

f_3 is \(\Omega(f_1) \)

A. TRUE
B. FALSE

Why or why not?
f(n) = O(g(n)), if there are positive constants c and n₀ such that f(n) ≤ c * g(n) for all n ≥ n₀.

f(n) = Ω(g(n)), if there are positive constants c and n₀ such that f(n) ≥ c * g(n) for all n ≥ n₀.

f₁ is Ω(f₃)

A. TRUE
B. FALSE

Why or why not?
\[f_3 = \Omega(f_1) \text{ but } f_1 \neq \Omega(f_3) \]

There is no way to pick a \(c \) that would make an \(O(n^2) \) function \((f_3) \) stay below an \(O(n) \) function \((f_1) \).
Summary

Big-O

- **Upper bound** on a function
 - $f(n) = O(g(n))$ means that we can expect $f(n)$ will always be **under** the bound $g(n)$
 - But we don’t count n up to some starting point n_0
 - And we can “cheat” a little bit by moving $g(n)$ up by multiplying by some constant c

Big-Ω

- **Lower bound** on a function
 - $f(n) = \Omega(g(n))$ means that we can expect $f(n)$ will always be **over** the bound $g(n)$
 - But we don’t count n up to some starting point n_0
 - And we can “cheat” a little bit by moving $g(n)$ down by multiplying by some constant c
Big-Θ

- **Tight bound** on a function.
- If \(f(n) = O(g(n)) \) *and* \(f(n) = \Omega(g(n)) \), then \(f(n) = \Theta(g(n)) \).
- Basically it means that \(f(n) \) and \(g(n) \) are interchangeable.
- Examples:
 - \(3n + 20 = \Theta(10n + 7) \)
 - \(5n^2 + 50n + 3 = \Theta(5n^2 + 100) \)
f_1 is $\Theta(f_2)$

A. TRUE
B. FALSE

Why or why not?
f_1 is $\Theta(f_2)$

A. TRUE
B. FALSE

Why or why not?
Since f_1 is $O(f_2)$ and $\Omega(f_2)$, it is also $\Theta(f_2)$ (this is the definition of big-Theta)
f_1 is $\Theta(f_3)$

A. TRUE
B. FALSE

Why or why not?
Big-θ and sloppy usage

- Sometimes people say, “This algorithm is O(n^2)” when it would be more precise to say that it is θ(n^2)
 - They are intending to give a tight bound, but use the looser “big-O” term instead of the “big-θ” term that actually means tight bound
 - Not wrong, but not as precise
- I don’t know why, this is just a cultural thing you will encounter among computer scientists
Shortcuts for calculating

Big-O analysis starting with a function characterizing the growth in cost of the algorithm
Let $f(n) = 3 \log_2 n + 4 n \log_2 n + n$

Which of the following is true?

A. $f(n) = O(\log_2 n)$
B. $f(n) = O(n \log_2 n)$
C. $f(n) = O(n^2)$
D. $f(n) = O(n)$
E. Other/none/more
Let \(f(n) = 546 + 34n + 2n^2 \)

Which of the following is true?

A. \(f(n) = O(2^n) \)
B. \(f(n) = O(n^2) \)
C. \(f(n) = O(n) \)
D. \(f(n) = O(n^3) \)
E. Other/none/more
Let \(f(n) = 2^n + 14n^2 + 4n^3 \)

Which of the following is true?

A. \(f(n) = O(2^n) \)
B. \(f(n) = O(n^2) \)
C. \(f(n) = O(n) \)
D. \(f(n) = O(n^3) \)
E. Other/none/more
Let $f(n) = 100$

Which of the following is true?

A. $f(n) = O(2^n)$
B. $f(n) = O(n^2)$
C. $f(n) = O(n)$
D. $f(n) = O(n^{100})$
E. Other/none/more
Extracting time cost from example code

Algorithm analysis starting with the algorithm
A student has counted how many times we perform each line of code

Is the count $3n+5$:

A. the best case?
B. the worst case?
C. the average case?
D. Other/none/more

<table>
<thead>
<tr>
<th>Statements</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 float findAvg (int []grades){</td>
<td></td>
</tr>
<tr>
<td>2 float sum = 0;</td>
<td>1</td>
</tr>
<tr>
<td>3 int count = 0;</td>
<td>1</td>
</tr>
<tr>
<td>4 while (count < grades.length) {</td>
<td>$n + 1$</td>
</tr>
<tr>
<td>5 sum += grades[count];</td>
<td>n</td>
</tr>
<tr>
<td>6 count++;</td>
<td>n</td>
</tr>
<tr>
<td>7 }</td>
<td></td>
</tr>
<tr>
<td>8 if (grades.length > 0)</td>
<td>1</td>
</tr>
<tr>
<td>9 return sum / grades.length;</td>
<td></td>
</tr>
<tr>
<td>10 else</td>
<td></td>
</tr>
<tr>
<td>11 return 0.0f;</td>
<td></td>
</tr>
<tr>
<td>12 }</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>$3n+5$</td>
</tr>
</tbody>
</table>
Count how many times each line executes, then which $O(\)$ most tightly and correctly characterizes the growth?

```java
int maxDifference(int[] arr) {
    max = 0;
    for (int i=0; i<arr.length; i++) {
        for (int j=0; j<arr.length; j++) {
            if (arr[i] - arr[j] > max)
                max = arr[i] - arr[j];
        }
    }
    return max;
}
```

A. $f(n) = O(2^n)$
B. $f(n) = O(n^2)$
C. $f(n) = O(n)$
D. $f(n) = O(n^3)$
E. Other/none/more

(assume $n = arr.length$)
Count how many times each line executes, then say which $O(\)$ statement(s) is(are) true.

```java
int maxDifference(int[] arr){
    max = 0;
    for (int i=0; i<arr.length; i++) {
        for (int j=0; j<arr.length; j++) {
            if (arr[i] - arr[j] > max)
                max = arr[i] - arr[j];
        }
    }
    return max;
}
```

A. $f(n) = O(2^n)$
B. $f(n) = O(n^2)$
C. $f(n) = O(n)$
D. $f(n) = O(n^3)$
E. Other/none/more

(assume $n = arr.length$)
Count how many times each line executes, then say which $O(\)$ statement(s) is(are) true.

```java
int maxDifference(int[] arr){
    max = 0;
    for (int i=0; i<arr.length; i++) {
        for (int j=0; j<arr.length; j++) {
            if (arr[i] - arr[j] > max)
                max = arr[i] - arr[j];
        }
    }
    return max;
}
```

A. $f(n) = \Theta(2^n)$ D. $f(n) = \Theta(n^3)$
B. $f(n) = \Theta(n^2)$ E. Other/none/more
C. $f(n) = \Theta(n)$ \hspace{1cm} (assume $n = arr.length$)