Announcements

1. HW3 posted... have you started?
 A. No, not at all
 B. I’ve read it
 C. I’ve started solving the problems
 D. 😻 I’m (almost) done
Announcements

1. HW3 posted... have you started?
2. Tutor hours: VERY CROWDED near deadline
3. Tutor hours rules:
 1. Your code must be indented properly or the tutor will not help you (and you will have to go to the end of the list!)
 2. If you put your name in the queue more than once ALL of your entries will be removed
Let $f(n) = 2^n + 14n^2 + 4n^3$.

Which of the following is true?

- A. $f(n) = O(2^n)$
- B. $f(n) = O(n^2)$
- C. $f(n) = O(n)$
- D. $f(n) = O(n^3)$
- E. Other/none/more

- $f(n) = \Omega(2^n) \Rightarrow \Theta(2^n)$
- $f(n) = \Omega(n^2)$
- $f(n) = \Omega(n)$
- $f(n) = \Omega(n^3)$
Let \(f(n) = 100 \)

Which of the following is true?

A. \(f(n) = O(2^n) \)
B. \(f(n) = O(n^2) \)
C. \(f(n) = O(n) \)
D. \(f(n) = O(n^{100}) \)
E. Other/none/more

\[c = 712 \]
\[n_0 = 5 \]
Extracting time cost from example code

Algorithm analysis starting with the algorithm
Steps for calculating the Big O (Theta, Omega) bound on code

- Count the number of instructions in your code as precisely as possible as a function of n, which represents the size of your input (e.g. the length of the array). This is your \(f(n) \).
 - Make sure you know if you are counting best case, worst case or average case – could be any of these!
- Simplify your \(f(n) \) to find a simple \(g(n) \) such that \(f(n) = \Theta(g(n)) \) (or \(\Omega(g(n)) \) or \(\Theta(g(n)) \))
A student has counted how many times we perform each line of code
Is the count $3n+5$:
A. the best case?
B. the worst case?
C. the average case?
D. Other/none/more

<table>
<thead>
<tr>
<th>Statements</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 float findAvg (int []grades){</td>
<td></td>
</tr>
<tr>
<td>2 float sum = 0;</td>
<td>1</td>
</tr>
<tr>
<td>3 int count = 0;</td>
<td>1</td>
</tr>
<tr>
<td>4 while (count < grades.length) {</td>
<td>$n+1$</td>
</tr>
<tr>
<td>5 sum += grades[count];</td>
<td>n</td>
</tr>
<tr>
<td>6 count++;</td>
<td>n</td>
</tr>
<tr>
<td>7 }</td>
<td></td>
</tr>
<tr>
<td>8 if (grades.length > 0)</td>
<td>1</td>
</tr>
<tr>
<td>9 return sum / grades.length;</td>
<td></td>
</tr>
<tr>
<td>10 else</td>
<td>1</td>
</tr>
<tr>
<td>11 return 0.0f;</td>
<td></td>
</tr>
<tr>
<td>12 }</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>$O(n) = f(n)+3n+5$</td>
</tr>
</tbody>
</table>
A student has counted how many times we perform each line of code

Do you need to count the while loop header?
A. Yes
B. No

<table>
<thead>
<tr>
<th>Statements</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 float findAvg (int []grades){</td>
<td></td>
</tr>
<tr>
<td>2 float sum = 0;</td>
<td>1</td>
</tr>
<tr>
<td>3 int count = 0;</td>
<td>1</td>
</tr>
<tr>
<td>4 while (count < grades.length) {</td>
<td>n + 1</td>
</tr>
<tr>
<td>5 sum += grades[count];</td>
<td>n</td>
</tr>
<tr>
<td>6 count++;</td>
<td>n</td>
</tr>
<tr>
<td>7 }</td>
<td></td>
</tr>
<tr>
<td>8 if (grades.length > 0)</td>
<td>1</td>
</tr>
<tr>
<td>9 return sum / grades.length;</td>
<td></td>
</tr>
<tr>
<td>10 else</td>
<td>1</td>
</tr>
<tr>
<td>11 return 0.0f;</td>
<td></td>
</tr>
<tr>
<td>12 }</td>
<td></td>
</tr>
<tr>
<td>ALL</td>
<td>3n+5</td>
</tr>
</tbody>
</table>

HW3: Counting the header is up to you
Count how many times each line executes, then which \(O(\cdot) \) most tightly and correctly characterizes the growth?

\[
\text{int maxDifference(int[]}\, \text{arr)}\{ \\
\quad \text{max} = 0; \\
\quad \text{for (int} \, i = 0; \, i < \text{arr.length} \, \text{; i++} \) \{ \\
\quad \quad \text{for (int} \, j = 0; \, j < \text{arr.length} \, \text{; j++} \) \{ \\
\quad \quad \quad \text{if (arr[i] - arr[j] > max) } \\
\quad \quad \quad \quad \text{max = arr[i] - arr[j];} \\
\quad \quad \}\text{)} \\
\quad \}\text{return max;}
\]

A. \(f(n) = O(2^n) \)

B. \(f(n) = O(n^2) \)

C. \(f(n) = O(n) \)

D. \(f(n) = O(n^3) \)

E. Other/none/more

\((\text{assume } n = \text{arr.length})\)
Count how many times each line executes, then say which $O(\)$ statement(s) is(are) true.

```java
int maxDifference(int[] arr) {
    max = 0;
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < arr.length; j++) {
            if (arr[i] - arr[j] > max)
                max = arr[i] - arr[j];
        }
    }
    return max;
}
```

A. $f(n) = O(2^n)$
B. $f(n) = O(n^2)$
C. $f(n) = O(n)$
D. $f(n) = O(n^3)$
E. Other/none/more
(assume $n = arr.length$)
Count how many times each line executes, then say which \(O(\) \) statement(s) is(are) true.

```java
int maxDifference(int[] arr){
    max = 0;
    for (int i=0; i<arr.length; i++) {
        for (int j=0; j<arr.length; j++) {
            if (arr[i] - arr[j] > max)
                max = arr[i] - arr[j];
        }
    }
    return max;
}
```

A. \(f(n) = \theta(2^n) \)
B. \(f(n) = \theta(n^2) \)
C. \(f(n) = \theta(n) \)
D. \(f(n) = \theta(n^3) \)
E. Other/none/more
(assume \(n = arr.length \))
Some Common Cost Function Classes

<table>
<thead>
<tr>
<th>$\log_2 n$</th>
<th>n</th>
<th>$n \log_2 n$</th>
<th>n^2</th>
<th>2^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>24</td>
<td>64</td>
<td>256</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>64</td>
<td>256</td>
<td>65,536</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>160</td>
<td>1,024</td>
<td>4,294,967,296</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>384</td>
<td>4,096</td>
<td>1.84×10^{19}</td>
</tr>
<tr>
<td>7</td>
<td>128</td>
<td>896</td>
<td>16,384</td>
<td>3.40×10^{38}</td>
</tr>
<tr>
<td>8</td>
<td>256</td>
<td>2,048</td>
<td>65,536</td>
<td>1.16×10^{77}</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>4,608</td>
<td>262,144</td>
<td>1.34×10^{154}</td>
</tr>
<tr>
<td>10</td>
<td>1,024</td>
<td>10,240</td>
<td>1,048,576</td>
<td>1.80×10^{308}</td>
</tr>
</tbody>
</table>

Facebook users: 1,060,000,000

$5\text{GHz} = 5 \times 10^9 \text{ cycles per second}$

6.4 s 224,720,000 s (or 7.12 years)
Benchmarking code
An alternative/supplement to big-O style analysis
Basic procedure for benchmarking

for problem size $N = \text{min}, \ldots, \text{max}$

1. initialize the data structure
2. get the current (starting) time
3. run the algorithm on problem size N
4. get the current (finish) time
5. timing = finish time – start time
Timer methods in Java

- Java has two static methods in the System class:
  ```java
  /** Returns the current time in milliseconds. */
  static long System.currentTimeMillis()
  
  /** Returns the current value of the most precise available system timer, in nanoseconds */
  static long System.nanoTime()
  
  If the algorithm can take less than a millisecond to run, you should use System.nanoTime()!
One way to improve the accuracy of measuring the running time of an algorithm is by

A. Using a faster computer
B. Averaging the measurement results
C. Starting up more applications to have a larger set of running applications
D. Improving the time the algorithm takes to finish executing

B.
IMPROVED procedure for benchmarking

for problem size $N = \text{min, ... max}$

1. initialize the data structure
2. for K runs:
   1. get the current (starting) time
   2. run the algorithm on problem size $N$
   3. get the current (finish) time
   4. timing = finish time – start time
3. Average timings for K runs for this $N$
Explain these results...

Timings for `findMax()` on an array of `int`s and an array of `Integer`s (times are in milliseconds)

<table>
<thead>
<tr>
<th>n</th>
<th>array of int</th>
<th>array of Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>800,000</td>
<td>2.314</td>
<td>4.329</td>
</tr>
<tr>
<td>4,000,000</td>
<td>11.363</td>
<td>21.739</td>
</tr>
<tr>
<td>8,000,000</td>
<td>22.727</td>
<td>42.958</td>
</tr>
</tbody>
</table>

From these measurements, what is the likely big-O time cost of `findMax()` on array of `int`?

A. \( f(n) = O(\log_2 n) \)  
B. \( f(n) = O(n \log_2 n) \)  
C. \( f(n) = O(n^2) \)  
D. \( f(n) = O(n) \)  
E. Other/none/more
Explain these results...

Timings for `findMax()` on an array of `int`s and an array of `Integer`s (times are in milliseconds)

<table>
<thead>
<tr>
<th>n</th>
<th>array of int</th>
<th>array of Integer</th>
</tr>
</thead>
<tbody>
<tr>
<td>800,000</td>
<td>2.314</td>
<td>4.329</td>
</tr>
<tr>
<td>4,000,000</td>
<td>11.363</td>
<td>21.739</td>
</tr>
<tr>
<td>8,000,000</td>
<td>22.727</td>
<td>42.958</td>
</tr>
</tbody>
</table>

From these measurements, what is the likely big-O time cost of `findMax()` on array of `Integer`?

A. \( f(n) = O(\log_2 n) \)  
B. \( f(n) = O(n \log_2 n) \)  
C. \( f(n) = O(n^2) \)  
D. \( f(n) = O(n) \)  
E. Other/none/more
Explain these results...

Timings for \texttt{findMax()} on an array of \texttt{ints} and an array of \texttt{Integers} (times are in milliseconds)

<table>
<thead>
<tr>
<th>(n)</th>
<th>array of \texttt{int}</th>
<th>array of \texttt{Integer}</th>
</tr>
</thead>
<tbody>
<tr>
<td>800,000</td>
<td>2.314</td>
<td>4.329</td>
</tr>
<tr>
<td>4,000,000</td>
<td>11.363</td>
<td>21.739</td>
</tr>
<tr>
<td>8,000,000</td>
<td>22.727</td>
<td>42.958</td>
</tr>
</tbody>
</table>

Discussion:
- Why would \texttt{Integer} take more time?
- If \texttt{Integer} takes more time, why does it have the same Big-O cost as \texttt{int}?
Benchmarking pitfalls (Demo)

- Not running enough reps
- Running on too small a problem
- Strange behavior with the first run